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• The concentration of non-structural car-
bohydrates (NSCs) in fine roots de-
creased with elevation in winter.

• Winter NSCs stored in roots transferred
to aboveground tissues during winter
and at the beginning of growing season.

• Both available soil P and plant tissue P
concentrations decreased with increas-
ing elevation.

• The upper limit of Q. aquifolioides on
Balang Mountain may be co-deter-
mined by winter root NSC storage and
P availability.
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Elevation is a complex environmental factor altering temperature, light, moisture and soil nutrient availability,
and thus may affect plant growth and physiology. Such effects of elevation may also depend on seasons. Along
an elevational gradient of the Balang Mountain, southwestern China, we sampled soil and 2-year old leaves, 2-
year old shoots, stem sapwood and fine roots (diameter b 5 mm) of Quercus aquifolioides at 2843, 2978, 3159,
3327, 3441 and 3589 m a.s.l. in both summer and winter. In summer, the concentrations of tissue non-structural
carbohydrates (NSC) did not decrease with increasing elevation, suggesting that the carbon supply is sufficient
for plant growth at high altitude in the growing season. The concentration of NSC in fine roots decreased with
elevation inwinter, and themean concentration of NSC across tissues in a whole plant showed no significant dif-
ference between the two sampling seasons, suggesting that the direction of NSC reallocation among plant tissues
changedwith season. During the growing season, NSC transferred from leaves to other tissues, and inwinter NSC
stored in roots transferred from roots to aboveground tissues. Available soil N increased with elevation, but total
N concentrations in plant tissues did not show any clear elevational pattern. Both available soil P and total P con-
centrations in all plant tissues decreased with increasing elevation. Thus, tissue N:P ratio increased with
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elevation, suggesting that Pmay become a limiting element for plant growth at high elevation. The present study
suggests that the upper limit of Q. aquifolioides on Balang Mountain may be co-determined by winter root NSC
storage and P availability. Our results contribute to better understanding of the mechanisms for plants' upper
limit formation.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Global warming is altering soil biogeochemistry in mountain sys-
tems around the world (Mayor et al., 2017), and there is increasing ev-
idence that mountains are highly responsive to global climate change
(Pauli et al., 2012). The global occurrence of mountains across all lati-
tudes and the influential effect of declining temperaturewith increasing
elevation, leading to the formation of treelines (Körner, 2012), offer
unique opportunities to examine warming-induced phenomena in a
natural context. As many environmental factors, such as temperature,
precipitation, soil chemical and physical properties and growing season
length, change simultaneously with elevation (White et al., 1999;
Hughes, 2000; Körner, 2007), elevation can be used as a proxy for vari-
ation in biotic and abiotic characteristics to study and better understand
how changes in climate may affect the growth and physiology of plants
(Davis et al., 1991).

Environmental variation along elevational gradients may influence
the functional and structural features of plants (Cordell et al., 1998;
Peterson, 1998; Sexton et al., 2009), thus determining their growth (Li
et al., 2003; Li and Yang, 2004) and distribution (Kessler, 2001; Vetaas
and Grytnes, 2002; Grytnes, 2003). At an individual level, because
lower temperature and shorter growing season negatively affect the
carbon gain (photosynthesis), but results in a relatively greater decrease
of carbon consumption or loss (e.g., respiration), the carbon balance of a
plant in a year cycle may turn positive with increasing altitude (Ryan,
1991; Atkin and Tjoelker, 2003). In this sense, the carbon balance can
be regarded as a proxy for plant responses to the total environment
and an indicator of the cascading effects of warming temperature
(Sundqvist et al., 2013). Current species distribution and function
along an elevation gradient can be used to track range shifts of organ-
isms in response to future climate change.

Individual-level carbon balance can be characterized by tissue con-
centrations of non-structural carbohydrates (NSC), which involves solu-
ble sugars and starch (Mooney, 1972; Chapin et al., 1990; Li et al., 2002).
Tissue NSC reflect the ratio of carbon source to sink activity (Hoch and
Körner, 2003; Bansal and Germino, 2008; Li et al., 2008a).When carbon
supply from photosynthesis exceeds plant's demand for growth and
maintenance, a large amount of NSC will accumulate as reserves in
plant tissues to support future growth (Chapin et al., 1990). By contrast,
when source activity is insufficient and the carbon demand exceeds the
carbon supply, little NSC will accumulate (Li et al., 2001, 2002). Never-
theless, in situ evidence for deficient carbon supply to meet growth de-
mand of trees approaching the treeline is scarce (Bansal and Germino,
2008; Mayor et al., 2017). A large proportion (up to 70%) of carbon
gained through photosynthesis can be lost through respiration, which
is more sensitive to temperature than photosynthesis (Atkin et al.,
2005).

Previous studies showed that, in the growing season, theNSC level in
trees at higher elevation is not reduced (declined carbon supplied from
photosynthesis), and sometimes even higher (restricted carbon de-
mand due to a limited tissue formation), than that in trees at lower alti-
tude (Körner, 2003; Hoch and Körner, 2003; Handa et al., 2005; Shi et
al., 2006, 2008; Gruber et al., 2011; Sala et al., 2012; Wiley and
Helliker, 2012; Dang et al., 2015). However, most of these studies com-
pared NSC in trees only at two or three different elevations and across
an altitude gradient of ˂300 m, i.e., considering trees at the upper limit
of their climate range and trees at one or two lower elevations
(Körner, 2003; Li et al., 2008a; Fajardo and Piper, 2014). These results
detract from a broad understanding of elevational trend of NSC in
plants, especially when a plant species is distributed across a wide
elevational range. Furthermore, few studies have specifically considered
the NSC status in the dormant season, since the alpine treeline is nor-
mally not accessible in winter due to snow cover (Hoch and Körner,
2003; Richardson et al., 2004). Thus, it is still unclear whether the
elevational pattern of plant NSC in the dormant season (i.e., winter) is
similar to that in the growing season (Li et al., 2008a; Sveinbjörnsson
et al., 2010; Dang et al., 2015). Zhu et al. (2012a, 2012b) investigated
the seasonal dynamics of tissue NSC in a treeline species across a year
cycle, but this study compared only three elevations, which makes the
altitudinal pattern of NSC levels difficult to interpret. Therefore, our ca-
pacity to predict how NSC status of trees changes with elevation is still
limited, and additional research is needed to clarify whether the carbon
balance of trees changes (increase or decrease) linearly or non-linearly
with increasing elevation.

The concentrations of NSC in different plant tissues can respond to
elevation differently (Li et al., 2008a, 2008b; Shi et al., 2006; Zhu et al.,
2012a, 2012b), but the underlying driving factor for such differences is
still unclear. Because low temperatures at high altitudes are likely to
limit biogeochemical processes, soil organic carbon concentration com-
monly increases and the availability of soil nutrients decreases with in-
creasing elevation (Sundqvist et al., 2013; He et al., 2016). Nitrogen (N)
and phosphorus (P) are key nutrients for the photosynthesis process,
which can directly affect the concentration of NSC in leaves, as well as
in other tissues (Li et al., 2008b; Reich et al., 2008). Elser et al. (2003)
found that different species at high elevation showed different re-
sponses to N and P concentrations in tissues. The relative importance
of P versus N in limiting plant growthmay vary with altitude due to dif-
ferences in a range of factors, including N deposition, parent material,
and vegetation type (Bowman and Hurry, 1993; Shaver and Chapin,
1995). Although N is commonly considered the main limiting nutrient
for plant growth in temperate and cold environments (Vitousek and
Howarth, 1991), the role of P limitation (and co-limitation of N and P)
is increasingly recognized as of importance (Attiwill and Adams, 1993;
Zotz, 2004; Reich et al., 2008). Although an increasing amount of evi-
dence suggests that N versus P limitation varies among plant communi-
ties, relatively little is known about how the availability and the relative
importance of plant N and Pwill be influenced by elevation inmountain
systems, and whether elevational patterns of nutrients differ between
plant tissues.

We sampled a common evergreen broad-leaved tree Quercus
aquifolioides at six elevations in both summer and winter to examine
the elevational trends of NSC, N, and P in different plant tissues and
their relationships across seasons. Our hypotheses were (1) that tissue
NSC concentration of trees changes with elevation, (2) that this
elevational pattern is related to season associated with temperature,
and (3) that this pattern is correlated with the elevational patterns of
plant N and P status, because plant N and P are two key elements for
the photosynthesis process that can directly affect the tissue NSC con-
centration and NSC balance (Li et al., 2008b; Reich et al., 2008).

2. Materials and methods

2.1. Study site and climate conditions

The studywas carried out on the sunny slope of the BalangMt. in the
Wolong Natural Reserve (102°57′ E, 30°53′ N), located at the eastern
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edge of Qinghai-Tibetan Plateau in southwestern China. The study area
has a subtropical inland mountain climate with sunny, dry winter (No-
vember to April) and warm, humid summer (June to September). Ac-
cording to long-term climate data collected at 1920 m a.s.l. (Wolong
Nature Reserve Authority), the annual mean precipitation is 995 mm,
with rainfall mainly occurring from May to September, and the annual
mean temperature is 12.8 °C, with the monthly mean temperature of
17.0 °C in July and−1.7 °C in January. Soil on the study slope is moun-
tain brown soil with a depth of b50 cm.

Along the elevational gradient on the sunny slope of the Balang Mt.,
three climate stations were established at 2800, 3200 and 3500 m a.s.l.,
respectively. Climate data were collected for 2012 and 2013.

2.2. Study species and sampling protocol

Quercus aquifolioides occupies a wide range of habitats and occurs at
altitudes from 2000 to 4500 m a.s.l. (Zhou, 1992; Zhu et al., 2012a,
2012b). It is a dominant, late-successional and climax species of the
sclerophyllous evergreen broad-leaved forests on sunny, south-facing
slopes in the region of the Hengduan Mountains (93°18′–104°43′ E,
26°33′–31°55′ N), southwestern China. On the sunny (south) slope of
the Balang Mt. pure Q. aquifolioides stand ranged from 2800 m to
3600 m a.s.l. (upper limit). This naturally generated shrub stand is 30–
35 years old, and comprises multi-stemmed clumps. Since the nature
reserve was established in 1976, the Q. aquifolioides stands had not
been disturbed.

We randomly selected six plots (5–10 m × 10 m) within the Q.
aquifolioides stands at each of six elevations along the elevational gradi-
ent, i.e., 2843, 2978, 3159, 3327, 3441, and 3589 (±5) m a.s.l. The dis-
tance between any two plots at the same elevation was at least 50 m
apart.We recorded the environmental conditions of each plot, andmea-
sured the mean height (H), mean diameter at breast height (DBH) and
number of main stems of Q. aquifolioides clumps in each plot. Growth
characteristics of Q. aquifolioides are summarized in Table 1. Samples
were taken on 18–19 July 2014 (hereafter referred to as summer, i.e.,
at the time of peak growth) and on 6–7 November 2014 (winter, at
the dormant season), when the plots at the lowest elevation (2843 m)
were already covered by a thin layer of snow.

In each plot, four types of Q. aquifolioides tissues (2-year old leaves,
2-year old shoots, stem sapwood, and fine roots with a diameter of
b0.5 cm) were sampled from N5 randomly selected individuals on
each of the two sampling dates (summer, winter). Samples of leaves
and shoots were taken from non-shaded branches on the upslope side
of plants, between 10:30 and 16:00, when all plots received direct sun-
shine (Graham et al., 2003). To collect fine roots, we first found coarse
roots originating from each selected Q. aquifolioides plant, and then
fine roots (b0.5 cm in diameter) attached to those coarse roots were
manually excavated using mini-spade, mini-pick, and trowel. Only
fine roots that were located within the 0–20 cm soil layer around the
stump (b50 cm) and covered by soil were collected, i.e., we did not col-
lect any deep roots fromparentmaterials (soil depthwas b20 cmon the
study slope) and roots exposed to air or sunlight. Leaves, shoots and fine
roots collected from all treeswithin a plotwere pooled andmixed to get
a sample for each tissue for each plot (n = 6 plots), respectively. All
Table 1
Growth (mean ± 1SE, n = 6) of the sampling trees of Quercus aquifoliodes along the ele-
vation gradient on the sunny slope of the Balang Mt.

Elevation
(m a.s.l.)

No. of stems
per clump

Mean height
(m)

Mean diameter at
breast height (cm)

1 3589 2.3 ± 1.2 1.8 ± 0.6 5.5 ± 1.0
2 3441 7.5 ± 2.9 2.8 ± 0.5 7.4 ± 1.0
3 3327 7.4 ± 2.9 2.8 ± 0.9 5.1 ± 1.7
4 3159 6.1 ± 4.5 2.8 ± 0.9 5.6 ± 2.0
5 2978 3.5 ± 1.6 3.1 ± 0.7 7.1 ± 2.8
6 2843 7.0 ± 1.8 3.7 ± 0.3 8.2 ± 2.0
samples were immediately stored in a cool box in the field, killed in a
microwave oven in the evening (40 s at 600W), and dried to a constant
weight at 65 °C inWolong Forest Ecosystem Research Station located at
2800 m a.s.l., and kept dry until laboratory treatments.

On 18–19 July 2014, mineral soils (0–10 cm depth) were also taken,
after removing soil organicmatter, from4 to 6 locations in each plot and
thenmixed homogeneously to get a composite soil sample for each plot
(n=6plots). Soils were taken from the 0–10 cm layer only because soil
depthwas b20 cmon that slope and themajority of fine root biomass in
forest stands occurs in the top 0–20 cm soil layer (Jackson et al., 1996;
Meinen et al., 2009). For each soil sample, a subsample was restored
in 4 °C to test the quick-acting N, and the other subsample was dried
for the measurement of P and other elements.

2.3. Non-structural carbohydrate (NSC) analysis

Dried plant material was shattered through a ball mill instrument.
The powdered material (0.1 g) was put into a 15 mL centrifuge tube,
where 5 mL of 80% ethanol was added. The mixture was incubated at
80 °C in a water bath shaker for 30 min, and then centrifuged at
4000 rpm for 5 min. The pellets were extracted two more times with
80% ethanol. Supernatants were retained for soluble sugar determina-
tions, and the ethanol-insoluble pellet was used for starch extraction.
Concentrations of NSC for a sample was defined as soluble sugar con-
centration plus starch concentration.

Soluble sugars in the supernatants were determined using the
anthronemethod (Seifter et al., 1950). An aliquot of the extract was hy-
drolysed in 5 mL of 0.4% anthrone solution (4 g anthrone in 1000 mL
95% H2SO4) in a boiling water bath for 10 min. After cooling, the sugar
concentration was determined spectrophotometrically (ultraviolet-vis-
ible spectrophotometer 752S; Cany Precision Instruments Co., Ltd.,
Shanghai, China) at 620 nm. Glucose was used as a standard. The
sugar concentration was calculated on a dry mass basis (% d.m.) and
also on a leaf area basis (g/m2, for leaves only).

Ethanol in the ethanol-insoluble pellet was removed by evaporation.
Starch in the residuewas released in 2mL distilled water for 15min in a
boiling water bath. After cooling to room temperature, 2 mL of
9.2 mol L−1 HClO4 was added. Starch was hydrolysed for 15 min. Dis-
tilled water (4 mL) was added to the samples. The samples were then
centrifuged at 4000 rpm for 10 min. The pellets were extracted one
more timewith 2mL of 4.6mol L−1 HClO4. Supernatants were retained,
combined and filled to 25 mL, to measure the glucose concentration
spectrophotometrically (ultraviolet-visible spectrophotometer 752S)
at 620 nm using anthrone reagent, and the starch concentration was
then calculated by multiplying glucose concentration by the conversion
factor of 0.9 (Osaki et al., 1991). The starch concentrationwas described
on a dry mass basis (% d.m.) and also on a leaf area basis (g/m2, for
leaves only).

2.4. Nitrogen and phosphorus analysis

Concentrations of total N of tissues were analyzed using a C/N ana-
lyzer (Vario Micro cube, Germany). Concentrations of total P were de-
termined following ammonium molybdate method after nitric acid
and perchloric acid (2:1) digestion (Sparks et al., 1996).

The availability of soil N (nitrate and ammonium) was determined
colorimetrically from 1 M KCL soil extracts from fresh soil samples
using an Auto Continuous Flow Analyzer (Bran & Luebbe, Norderstedt,
Germany). The availability of soil P was determined by the molybde-
num blue colorimetric method (Murphy and Riley, 1962) after extrac-
tion by 0.5 M NaHCO3 (Olsen, 1954).

2.5. Statistical analysis

Data were tested for normality and homogeneity of variance, and
transformed to logarithmwhen normality and homogeneity of variance



Table 2
The effects of elevation, sampling season (summer and winter), tissue type, and their in-
teractions on concentrations of non-structural carbohydrates (NSC), total nitrogen (N), to-
tal phosphorus (P), ratio of NSC to N (NSC:N), and ratio of N to P (N:P) in Quercus
aquifoliodes plants, tested with three-way ANOVAs.

Effects df NSC N P NSC:N N:P

Season (S) 1, 240 3.09ns 74.88⁎⁎⁎ 109.32⁎⁎⁎ 0.01ns 18.37⁎⁎⁎

Tissue (T) 3, 240 34.42⁎⁎⁎ 1160.77⁎⁎⁎ 104.49⁎⁎⁎ 114.87⁎⁎⁎ 90.05⁎⁎⁎

Elevation (E) 5, 240 5.21⁎⁎⁎ 26.33⁎⁎⁎ 20.46⁎⁎⁎ 8.401⁎⁎⁎ 9.045⁎⁎⁎

S × T 3, 240 75.28⁎⁎⁎ 11.33⁎⁎⁎ 31.24⁎⁎⁎ 11.05⁎⁎⁎ 47.69⁎⁎

T × E 15, 240 4.25⁎⁎⁎ 2.93⁎⁎⁎ 10.32⁎⁎⁎ 3.01⁎⁎⁎ 2.89⁎⁎⁎

S × E 5, 240 10.77⁎⁎⁎ 3.73⁎⁎⁎ 7.19⁎⁎⁎ 4.42⁎⁎⁎ 3.92⁎⁎⁎

S × T × E 15, 240 4.39⁎⁎⁎ 1.52ns 2.71⁎⁎⁎ 1.31ns 2.72⁎⁎⁎

F values are given. Note, degree of freedom (df) and significance levels (ns P N 0.05, ⁎P b

0.05, ⁎⁎P b 0.01, and ⁎⁎⁎P b 0.001).
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could not be met. First, we tested the effects of sampling season (sum-
mer, winter), tissue type (4 types), elevation (6 levels), and their inter-
actions on tissue NSC, N, P, NSC:N, and N:P, and found that tissue type
interacted with elevation to affect the parameters studied (Table 2).
We, therefore, analyzed the effects of sampling date and elevation on
each parameter for each tissue type separately (Table 3). To explore
the dynamic pattern along the elevational gradient, we tested the rela-
tionship between physiological indexes (NSC, N, P, NSC:N, and N:P) and
altitude with regression analysis (Figs. 1–6), as well as the correlation
analysis between soil and each tissue (Table 4). All the statistical analy-
ses were done using SPSS (v. 20.0, SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Climatic factors and soil N and P along the elevational gradient

The climatic pattern along the elevational gradient showed almost
the same trend for the two years, and annual and growing season pat-
terns differed only in the numeric value (Fig. 1). Air temperature (Fig.
1A, B) decreased linearly with elevation, but soil temperature did not
(Fig. 1C, D). Temperature lapse ratewas 0.46 °C per 100m. Growing sea-
son air humidity (Fig. 1H) increased linearly with elevation, but annual
air humidity did not (Fig. 1G). The precipitation was significantly less at
lower elevations than at the highest elevation (Fig. 1E, F). Available soil
N increased linearly with increasing elevation, but available soil P de-
creased linearly with elevation (Fig. 1I, J).

3.2. Plant tissue N and P along the elevational gradient

Plant tissueN andP concentration varied significantlywith sampling
season, tissue type, and elevation (Table 2). Total N and P level in differ-
ent plant tissues changed significantly with sampling season, except for
N in shoots (Table 3). In summer, tissue N concentration did not show
any clear elevational trends (Fig. 2A, C, E, G). In winter, N concentration
Table 3
The effects of elevation, sampling season (summer and winter), and their interaction on conce
ratio of NSC to N (NSC:N), and ratio of N to P (N:P) in Quercus aquifoliodes plants, tested with

Tissue Effect df NSC

Leaves Season (S) 1, 60 311.81⁎⁎⁎

Elevation (E) 5, 60 5.28⁎⁎⁎

S × E 5, 60 3.39⁎⁎

Shoots Season (S) 1, 60 0.18ns

Elevation (E) 5, 60 2.34⁎⁎

S × E 5, 60 1.27ns

Stems Season (S) 1, 60 52.15⁎⁎⁎

Elevation (E) 5, 60 2.32ns

S × E 5, 60 1.02ns

Fine roots Season (S) 1, 60 69.90⁎⁎⁎

Elevation (E) 5, 60 5.64⁎⁎⁎

S × E 5, 60 8.74⁎⁎⁎

F values are given. Note, degree of freedom (df) and significance levels (ns P N 0.05, ⁎P b 0.05, ⁎
in leaves and fine roots decreased linearly with increasing elevation
(Fig. 2B, H). In summer, P level in all plant tissues decreased linearly
with increasing elevation (Fig. 3A, C, E, G). In winter, P levels in leaves
and fine roots decreased linearly with increasing elevation (Fig. 3B, H).

3.3. Plant tissue NSC along the elevational gradient

There was no season effect on tissue NSC concentrations (Table 2),
but NSC levels varied significantly with both sampling season and tissue
type (Tables 2 and 3). In summer, the NSC concentrations in leaves in-
creased significantly linearly with increasing elevation (Fig. 4A), but
NSC levels in other tissues did not show any elevational trends (Fig.
4C, E, G). Inwinter, theNSC concentrations infine roots significantly de-
creased with increasing elevation (Fig. 4H).

3.4. Plant tissue NSC:N and N:P along the elevational gradient

Plant NSC:N and N:P ratio were significantly affected by interactions
between sampling season and tissue type, as well as interactions be-
tween elevation and tissue type (Table 2). Except for fine roots (Fig.
5G), tissue NSC:N increased linearly with elevation in summer (Fig.
5A, C, E). In winter, except for a linear increase in NSC:N in leaves (Fig.
5B), tissue NSC:N did not have clear trends with elevation (Fig. 5D, F,
H). Except for shoots (Fig. 6C), tissue N:P increased linearly with eleva-
tion in summer (Fig. 6A, E, G). In winter, except for a linear increase in
N:P in roots (Fig. 5H), tissueN:P did not have clear trendswith elevation
(Fig. 6B, D, F).

4. Discussion

4.1. Elevational effects on NSC and nutrients in different tissues

In summer (growing season), NSC in any tissues of Q. aquifolioides
did not decrease with elevation (Fig. 4), which is consistent with previ-
ous studies on treeline species (Hoch and Körner, 2005; Shi et al., 2006;
Li et al., 2008a, 2008b; Zhu et al., 2012a, 2012b; Yu et al., 2014; Fajardo
and Piper, 2014; Dang et al., 2015). This result suggests that the carbon
supply was sufficient for Q. aquifolioides during growing season in the
study site. However, low temperature and relative shorter growing sea-
son at high elevation reduced themetabolic processes needed for wood
production and tissue maintenance, which led to a linear increase of
NSC levels in leaves in summer (Richardson and Berlyn, 2002; Piper et
al., 2006). A delay in bud break can also be related to the increase in
NSC levels in leaves with increasing elevation (Gruber et al., 2011).

More interestingly, we revealed a linear decrease in NSC concentra-
tions in fine roots with increasing elevation in winter, which is consis-
tent with some previous studies conducted in winter (Li et al., 2008a,
2008b; Genet et al., 2010; Zhu et al., 2012a; Dang et al., 2015). The linear
decreasing pattern in sink tissues (especially roots) at upper altitude at
ntrations of non-structural carbohydrates (NSC), total nitrogen (N), total phosphorus (P),
two-way ANOVAs.

N P NSC:N N:P

63.04⁎⁎⁎ 24.35⁎⁎⁎ 313.79⁎⁎⁎ 52.65⁎⁎⁎

11.37⁎⁎⁎ 3.93⁎⁎ 7.53⁎⁎ 1.05ns

1.30ns 0.92ns 1.72ns 1.16ns

1.08ns 36.27⁎⁎⁎ 0.09ns 27.70⁎⁎⁎

6.62⁎⁎⁎ 1.83ns 4.89⁎⁎⁎ 7.17⁎⁎⁎

2.21ns 3.04⁎ 1.55ns 4.95⁎⁎⁎

9.96⁎⁎ 52.11⁎⁎⁎ 7.72⁎⁎ 47.66⁎⁎⁎

3.46⁎⁎ 5.61⁎⁎⁎ 3.32⁎ 6.60⁎⁎⁎

0.98ns 8.32⁎⁎⁎ 0.53ns 4.72⁎⁎⁎

52.59⁎⁎⁎ 39.26⁎⁎⁎ 0.05ns 32.17⁎⁎⁎

4.79⁎⁎⁎ 14.67⁎⁎⁎ 4.99⁎⁎⁎ 14.47⁎⁎⁎

0.55ns 3.24⁎⁎ 3.77⁎⁎ 4.79⁎⁎⁎

⁎P b 0.01, and ⁎⁎⁎P b 0.001).
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the end of the growing season may influence winter survival and early
spring re-growth, playing an important role in the persistence and de-
velopment of Q. aquifoliodes at its upper distributional elevations. The
root NSC concentrations decreased significantly with increasing eleva-
tion in winter, this phenomenon, indeed, did not imply fully depletion
of mobile carbohydrates in plants growing at their elevational limit



Fig. 2. Relationships between elevation and concentration of total nitrogen in different plant tissues (A–H) in two sampling seasons.
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(Fig. 4H). Moreover, increasing root biomass with increasing elevation
(Leuschner et al., 2007; Graefe et al., 2008; Moser et al., 2011; Zhu et
al., 2012a, 2012b) may compensate for the decreasing NSC concentra-
tion when considering the root NSC pool size.

We found that soil available N increased significantly with increas-
ing elevation (Fig. 1I), which may be a result of decreasing mineraliza-
tion (Kitayama et al., 1998; Soethe et al., 2008) and increasing organic
matter (Dieleman et al., 2013; Du et al., 2014) and thus increasing or-
ganic N content in soils with altitude. In general, N cycling rates (e.g., ni-
trification and denitrification) tend to be more active at lower
elevations than higher elevations in subtropical and tropical mountain
forests (Vitousek, 1994; Pendry and Proctor, 1996; Leuschner et al.,
2007), which may lead to decreasing N availability with increasing ele-
vation (Sjögersten andWookey, 2005), and thus, alpine ecosystems are
often thought to be N limited (Vitousek and Howarth, 1991). In our
study, high frequency of thunderstorm and snowfall may provide suffi-
cient available N in soils at high elevations (Fig. 1I). However, plant tis-
sueN concentrations (Fig. 2A–H)did not positively respond to increases
in soil N availability with increasing elevation (Fig. 1I). At higher eleva-
tions, lower temperature and shorter growing season may restrict
plants' N uptake and use (Vitousek, 1994; Liptzin et al., 2013;
Sundqvist et al., 2014), leading to a decoupling between soil N availabil-
ity (Fig. 1I) and plant tissue N (Fig. 2A–H) concentrations (Table 4).
Some studies described an increase in N accumulation and conservation
with increasing elevation as adaptive responses to low temperature in
alpine ecosystems, to enhance or maintain the metabolic capacity of
plants in cold environment (Richardson et al., 2001; Shi et al., 2006).
Our result showed a stable pattern of N in different tissues along the
elevational gradient in summer, suggesting that N resource does not
limit Q. aquifolioides growth at high elevations.



Fig. 3. Relationships between elevation and concentration of total phosphorus in different plant tissues (A-H) in two sampling seasons.
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We found a decreasing tendency for both plant tissue P (Fig. 3) and
available soil P (Fig. 1J) with increasing elevation. Consequently, there
was a strong and positive correlation between plant tissue P and soil
available P concentration (Table 4), suggesting that P is more limited
with increasing elevation. Some studies have also provided evidence
for a change in the relative importance of P versus N limitation with in-
creasing elevation (Van de Weg et al., 2009). Low P availability in soils
may directly restrict nutrient absorption and utilization, and indirectly
affect P-associated physiological processes in plants, which further
lead to a general decrease in total P levels in different tissues at high el-
evations (Fig. 3). However, Chen et al. (2013) measured leaf N and P
concentrations of 386 woody species in 14 forest sites across eastern
China, and found that both leaf N and P concentrations were negatively
correlated with mean annual temperature but positively correlated
with soil N and P contents. Other studies showed that leaf N and P
concentrations first increased and then decreased with increasing ele-
vation (Van de Weg et al., 2009; Fisher et al., 2013). Previous studies
demonstrated that changes in leaf N and P concentrations reflected en-
vironmental conditionsmore than plant intrinsic characteristics, such as
genotype (Ågren and Weih, 2012) and taxonomy (Zhang et al., 2012).

Plant N and P contents often influence each other during the grow-
ing season, especially in leaves (Kang et al., 2011; Yuan and Chen,
2012). Our results showed an increasing pattern of N:P in leaves in sum-
mer, which is consistent with previous studies (Yuan and Chen, 2012;
Fisher et al., 2013). Several studies found that tissue N:P ratio increased
with increasing elevation (Kang et al., 2011; Yuan and Chen, 2012; Chen
et al., 2013; Zhao et al., 2016). However, based on data gained from 386
woody species across eastern China, Chen et al. (2013) reported that
growing season leaf N:P ratio was positively correlated with mean an-
nual temperature, i.e. N:P ratio decreases with increasing elevation.



Fig. 4. Relationships between elevation and concentration of non-structural carbohydrates in different tissues (A–H) in two sampling seasons.
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The N:P ratio was found to bemuch higher in leaves than inwoods (Fig.
6), Yuan and Chen (2012) combined data from 211 published studies
and showed that leaves and roots had similar N:P ratios but the former
had significantly higher level of N and P concentration than the latter.
Decreasing elevational trend of soil P (Fig. 1J) in combination with in-
creasing elevational trend of soil N (Fig. 1I) and plant tissue N:P (Fig.
6) suggest a P limitation at high elevations.

Increasing P limitation can be coupled with higher N deposition and
redistribution of N accumulated in snow viamelt-water with increasing
elevation (Weintraub, 2011), if leaching is minor. This occurs in soils
dominated by low temperatures, which generally show low rates of or-
ganic matter decomposition, though N mineralization rates need to ac-
count for N demand by plants (Ruess et al., 1996). While a decline in
nutrient mineralization and N availability has been associated with an
increase in elevation in some studies (Sveinbjörnsson et al., 1995),
others have revealed contrasting results (Griffiths et al., 2009). Increas-
ing elevationmayhave contrasting effects on nutrient cyclingprocesses,
and it is not always associated with a decline in N mineralization and N
availability. It is possible that higher N and lower P mineralization at
higher elevation reflects decreasing microbial N demand and P



Fig. 5. Relationships between elevation and ratio of non-structural carbohydrates to concentration of total nitrogen in tissues (A–H) in two sampling seasons.
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immobilization with increasing elevation (Rinnan et al., 2007;
Nadelhoffer et al., 1991).

4.2. Seasonal variation of NSC and nutrients in different tissues

Seasonal variation of NSC indicated a season-dependent carbon bal-
ance between carbon acquisition (photosynthesis) and carbon invest-
ment (growth and respiration), which is consistent with previous
studies (Shibata and Nishida, 1993; Palacio et al., 2008; Zhu et al.,
2012a, 2012b). In summer, tissue NSC concentration did not decrease
with increasing elevation (Fig. 4A, C, E, G), whereas in winter, root
NSC concentration significantly linearly decreased with elevation (Fig.
4H). NSC may transfer among different tissues depending on the rela-
tive activity between tissues or between sources and sinks (Finn and
Brun, 1982), or at the expenses of growth during the growing season
to guarantee the survival of plants in winter, because high tissue NSC
concentrations help to avoid intra- and intercellular ice formation and
thus freezing damage. Moreover, tissue NSC levels may also be either
passively (source-to-sink flow) or actively (gene expression) controlled
(Wiley and Helliker, 2012). For example, when irradiance or source ac-
tivity is insufficient, biomass of stems and roots decreases, NSC can be
transferred from roots to leaves (Lee et al., 2007). Variations of environ-
mental conditions at higher elevations may, therefore, cause resource
remobilization among different tissues, which is also a strategy of plants
to face the harsh habitat (Gaucher et al., 2005; Kilpeläinen et al., 2005)
such as low temperature.

Available soil N increasedwith increasing elevation (Fig. 1I), indicat-
ing that soil N resources were sufficient to support Q. aquifolioides
growth along the elevational gradient, even at the upper limit. A world-
wide comparison revealed that trees at their upper limits did not have
any disadvantages in N supply compared to plants at lower elevations
(Körner, 1989). Unlike N in soil and plant tissues, both soil available P
(Fig. 1J) and plant tissue P (both in summer and winter) decreased
with increasing elevation (Fig. 3A–H), which may, as mentioned



Table 4
Correlations of concentrations of NSC, total N and total P of each tissuewith soil availableN
and P in summer.

NSC N P NSC N P

Leaves Shoots
Soil N 0.62⁎⁎ −0.09ns −0.38⁎ 0.21ns 0.13ns −0.32ns

Soil P −0.13ns 0.29ns 0.34⁎ −0.05ns 0.11ns 0.14ns

Stems Roots
Soil N 0.29ns −0.06ns −0.48⁎⁎ −0.07ns −0.11ns −0.60⁎⁎

Soil P 0.17ns 0.16ns 0.45⁎⁎ −0.08ns −0.05ns 0.53⁎⁎

The given are F values and significance levels (ns P N 0.05, ⁎P b 0.05, ⁎⁎P b 0.01, and ⁎⁎⁎P b

0.001).

Fig. 6. Relationships between elevation and ratio of total nitrogen to total phosphorus in tissues (A–H) in two sampling seasons.
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above, imply a P-limitation for plant growth at high elevations. Foliar
concentration of P, in organic (i.e., nuclear acid) and inorganic (i.e., or-
thophosphate) forms (Chapin and Kedrowski, 1983), often decreases
as altitude increases (Sundkvist et al., 2013). The inorganic P forms com-
prise a considerable proportion (Chapin and Kedrowski, 1983; Sterner
and Elser, 2002), mainly existing as storage materials from accumula-
tion, and reflecting the surrounding habitat (Sterner and Elser, 2002;
Oyarzabal andOesterheld, 2009). In summer andwinter, total P concen-
trations in different tissues showed a decrease along the elevational gra-
dient, correlating positively with available soil P. This pattern suggests a
P limited habitat along the elevational gradient in the study area, espe-
cially inwinter. Declining P availability, but highly variable or increasing
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availability of soil N, associated with increasing elevation, suggests that
increasing temperature with global warming may lead to a decrease in
the relative importance of P versus N limitation for Q. aquifolioides.

NSC:N in shoots andfine rootswas similar betweenwinter and sum-
mer, suggesting that the pattern of carbon and N balance was relatively
stable (Figs. 2 and 4). Carbon and N levels in plants generally reflect the
difference between uptake (photosynthesis; source activity) and de-
mand (metabolism, growth and export; sink activity) (Körner, 2003).
Increasing NSC:N with altitude indicated that carbon source did not
limit tree growth and development along this elevational gradient.
Other factors can be more limiting for plant growth and distribution in
this study area. A linear increase in theNSC:Nwith altitudemay indicate
relative increases in N limitation with altitude (He et al., 2006). In the
current study, however, variation in NSC:Nwas causedmore by increas-
ingNSC levels rather than by decreasingN concentrations. Nevertheless,
nutritional constraints at high elevation may still hamper the conver-
sion of carbohydrates into N- and/or P-based compounds (e.g., amino
acids, proteins), as well as the transport of these compounds from
leaves to other plant organs (Körner, 2003).

The ratio of N to P can be regulated by soil nutrient availability, tree
growth rates and plant needs (Tessier and Raynal, 2003; Elser et al.,
2003; Reich and Oleksyn, 2004; Hogan et al., 2010) and, as such, is
regarded as an important index to explain nutrient limitation pattern
(Wardle et al., 2004; He et al., 2006). A review of 40 fertilization studies
revealed that an N:P N 16 indicated P limitation, while an N:P b 14 is in-
dicative of N limitation. At N:P between 14 and 16, either N or P can be
limiting or plant growth is co-limited by N and P together (Koerselman
and Meuleman, 1996). In summer, N:P in leaves increased significantly
with elevation, and much more than in other tissues. N:P was higher
than 16 in leaves but lower than 14 in other tissues in summer. In
both summer and winter, we found a tendency for increasing N:P
with altitude in all tissues.We suggest that P limitation plays amore im-
portant role thanN limitation onQ. aquifolioides growth at higher eleva-
tions. Zhao et al. (2014) found that tree leaf N:P ratios increased, while
leaf N and P concentrations decreased with elevation (500–2300 m
a.s.l.) in northeastern China. Conversely, N:P ratios decreased signifi-
cantly as elevation increased, especially at the transition from krumm-
holz to the alpine tundra in a Himalayan treeeline ecotone (Müller et
al., 2017). He et al. (2016) found that plant and soil nutrient properties
did not change linearlywith elevation from50 to 950ma.s.l. in subtrop-
ical China.
5. Conclusions

Our results fully supported our 1st and 2nd hypotheses but are only
partly in line with our 3rd hypothesis (see Introduction). Plant NSC
levels depend on tissue type, elevation, season, and tissue P, but it was
not correlated with tissue N. This study showed that the availability of
soil N significantly increased with increasing elevation, probably be-
cause of the slowing organic matter cycling under low temperature
and N deposition from snow at high elevations. Conversely, the
availability of soil P decreased progressively with increasing elevation,
which implies increasing P limitation with increasing elevation. Soil
nutrient availability influenced by climate (temperature and precipita-
tion), soil (leaching and weathering) and biotic factors (litter quality
and microbial activity), affects tissue nutrient and carbohydrate
concentrations. However, regardless of the relative changes in N and P
limitation, and carbohydrate availability, tissue stoichiometry (NSC:N,
N:P) revealed that transfer of NSC among different organs may occur
in current conditions and that a decrease in the relative importance of
P versus N limitation can be expected with a warming climate. In sum-
mer, carbon supply is sufficient for Q. aquifolioides growth and develop-
ment at its upper limit, but Pmay be ormay become a limiting factor for
plant growth. Stoichiometric ratios and relationships suggest that the
upper limit of this species likely depends on the nutrient source
(namely P), on one hand, and on the root winter NSC storage, on the
other hand.
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