作 者:李钧敏,等
影响因子:3.976
刊物名称:Science of the Total Environment
出版年卷:2017,599–600: 1462–1468
文章摘要:Closely associated microbes have been shown to drive local adaptation of plants. However, few studies provide direct evidence, disclosing the role of arbuscular mycorrhiza fungi (AMF) in their rapid adaptation of plants toward heavy metal tolerance. Elsholtzia splendens is a Cu-tolerant plant that was used as a model plant to study seed morphological traits as well as traits related to seed germination and seedling growth. This was achieved after acclimation for two generations with 1000 mg/kg CuSO4 in either absence or presence of AMF. In the absence of AMF, acclimation to Cu for two generations significantly decreased surface area, perimeter length, and perimeterwidth of E. splendens seeds, aswell as seedling survival rate and freshweight of the radicle of seedlings. However, in the presence of AMF, both the germination rate and the germination index of E. splendens seeds as well as the fresh weights of hypocotyl and radicle significantly increased. These results revealed that after Cu acclimation treatment, seeds and seedlings that had been inoculated with AMF outperformed those without AMF inoculation under Cu addition, indicating that AMF can facilitate rapid adaptation of E. splendens to Cu stress. In addition, two generations of Cu acclimation under AMF absence significantly increased radicle length, while amplitude increased under AMF presence, indicating that the direct adaptive plasticity response of radicle length to Cu stress helps with the Cu stress adaptation of E. splendens.
全文链接